Laws of Indices

Elementary Algebra

(Indices, Surds, Rationalising factors, Polynomials)

Introduction

Surds or Radicals

In this section, we shall introduce the concepts of a surd and its order. But, let us first understand the concept of positive n^{th} root of a real number.

Positive nth Root of a real number:

Let 'a' be a real number and 'n' be a positive integer. Then a number which when rose to the power n gives 'a' is called the nth root of 'a' and it is written as $\sqrt[n]{a}$ or a¹ / n

Thus nth root of a real number 'a' is a real number 'b' such that $b^n = a$. The real number 'b' is denoted by $a^{1/n}$ or $\sqrt[n]{a}$.

The cube root of 2 is the real number whose cube is 2. The cube root of 2 is denoted by the symbol $2^{1/3}$ or $\sqrt[3]{2}$. The fourth root of 81 is the real number 3, because 3^4 = 81. The fourth root of 81 is denoted by $\sqrt[4]{81}$.

TIP

It is clear from the definition that every surd is an irrational number but every irrational number is not a surd. If n is a positive

integer and a is a real number, then $\sqrt[n]{a}$ is not a surd if $\sqrt[n]{a}$ is rational.

Surds or Radicals:

If a is a rational number and n is a positive integer such that the nth root of a

i.e. $a^{1/n}$ or $\sqrt[n]{a}$ is an irrational number, then $a^{1/n}$ is called a **surd** or **radical** of order **n** and **a** is called the

radicand. E.g.:- Since 5 is a rational number and 5² 1 $5²$ is a irrational number, hence it is a surd but on the other hand 16 is a rational number and $(16)^{\frac{1}{4}}$ is not a irrational number. Therefore, it is not a surd.

Law of Radicals

As we have seen that surds can be expressed with fractional exponents (indices), the laws of indices are therefore applicable to surds also. The laws of radicals are very useful to simplify a given radical or to reduce two given radicals to the same form.

I st Law: *For any positive integer 'n' and a positive rational number 'a'*

$$
(\sqrt[n]{a})^n = \sqrt[n]{a^n} = a.
$$

IInd Law: *If n is a positive integer and a, b are rational numbers, then*

$$
\sqrt[n]{a} \sqrt[n]{b} = \sqrt[n]{ab}
$$

IIIrd Law: *If n is a positive integer and a, b are rational numbers, then*

$$
\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}
$$

IVth Law: *If m, n are positive integers and a is a positive rational number, then*

$$
\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a} = \sqrt[n]{\sqrt[mn]{a}}
$$

Vth Law: *If m, n are positive integers and a is a positive rational number, then*

$$
\sqrt[m]{\sqrt[m]{(a^p)^m}} = \sqrt[n]{a^p} = \sqrt[mn]{a^{pm}}
$$

Surds in simplest form:

A surd is said to be in its simplest form if it has:-

- (i) No fraction under the radical sign.
- (ii) No factor which is n^{th} power of a rational number under the radical sign of index n.
- (iii) The smallest possible index of this radical i.e., the order of the surd is the smallest possible order.

Rationalising Factor

If the product of two surds is a rational number, then each one of them is called the rationalising factor (R.F) of the other.

 $\overline{}$, and the contribution of the

Let us understand with the help of few examples:

 \Rightarrow $\sqrt{5}$ is a rationalising factor of 3 $\sqrt{5}$, because 3 $\sqrt{5}$ × $\sqrt{5}$ = 3 × 5 = 15 which is a rational number. Also, $2\sqrt{5}$ is a rationalising factor of $\sqrt{5}$, because $\sqrt{5} \times 2\sqrt{5} = 2 \times 5 = 10$, which is a rational number. In fact, k $\sqrt{5}$ is a rationalising factor of $\sqrt{5}$, where k is any non-zero rational number.

TIP Rationalising factors of $a \pm \sqrt{b}$ and $\sqrt{a} \mp \sqrt{b}$ \sqrt{b} are a $\mp \sqrt{b}$ and $\sqrt{a} \pm \sqrt{b}$ resp.

⇒ Since $(\sqrt{3} + \sqrt{2}) (\sqrt{3} - \sqrt{2}) = (\sqrt{3})^2 - (\sqrt{2})^2 = 3 - 2 = 1$, therefore $\sqrt{3} - \sqrt{2}$ is a R.F. of $\sqrt{3} + \sqrt{2}$ and vice-versa.

 $a \pm \sqrt{b}$

- **Ex.4** If $\sqrt{a} = \sqrt[3]{b} = \sqrt[4]{c}$. And abc = 8, what is the value of a?
- **Sol.** It is given $a^{1/2} = b^{1/3} = c^{1/4} = k$ (assume) Therefore, $a = k^2$, $b = k^3$, $c = k^4$ So abc = $k^9 = 8$ $\Rightarrow k^3 = 2$ \Rightarrow k = $\sqrt[3]{2}$ \therefore a = k² = $\sqrt[3]{4}$
- **Ex.5** $\mathbf{t}_n = \frac{1}{\sqrt{n} + \sqrt{n-1}}$, $n \ge 2$. Then what is the value of $\mathbf{t}_2 + \mathbf{t}_3 + \mathbf{t}_4 + \dots + \mathbf{t}_{81}$:

Sol.
$$
t_2 + t_3 + t_4 + \dots + t_{81} = \frac{1}{\sqrt{2} + \sqrt{1}} + \frac{1}{\sqrt{3} + \sqrt{2}} + \frac{1}{\sqrt{4} + \sqrt{3}} + \dots + \frac{1}{\sqrt{81} + \sqrt{80}}
$$

By Rationalizing,

$$
= \frac{1}{2}(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+....+\sqrt{80}-\sqrt{79}+\sqrt{81}-\sqrt{80}) = \frac{1}{2}(\sqrt{81}-\sqrt{1}) = \frac{1}{2}(9-1) = 4.
$$

Logarithms & its properties

If $a^x = b$, we can write $a = b^x$, that means we can write b in terms of a & x, and a in terms of b & x. Suppose, if we want to write x in terms of a & b, that can be written as $x = log_a b$. So if $a^x = b$, then $x = \log_a b$.

(It can be read as log b to the base a) (where a is called the base)

Properties of logarithm

Logarithm is not defined for zero and for negative numbers. 1. $log_a 0 = not defined$ 2. $log_a 1 = 0$ 3. $log_a m + log_a n = log_a mn$ 4. $log_a m^n = n log_a m$ $=$ n log_am $=$ 5. log_am $-$ log_an $=$ log_a $\left| \frac{1}{2} \right|$ ⎠ $\left(\stackrel{m}{-}\right)$ ⎝ ⎛ n $\binom{m}{n}$ 6. log_ba = $\frac{\log_c a}{\log_c b}$ log_c a c c 7. $log_a a = 1$ 8. $log_b a = \frac{1}{log_a b}$ 1 a 9. $a^{\log_a m} = m$ 10. $log_{a^n} m = \frac{1}{n}$.log_am **Ex.6** If $log(m + n) = log m + log n$; then $m = ?$ **(1)** $\frac{m}{(n-1)}$ (2) $\frac{n}{(m-1)}$ (3) $\frac{n}{(n-1)}$ $\frac{n-1}{(n-1)}$ (4) $\frac{n^2}{(n-1)}$ [−] **(5) None of these Sol.** $log(m + n) = log m + log n$ \Rightarrow log (m + n) = log mn \Rightarrow m + n = mn or mn – m = n \Rightarrow m (n – 1) = n ∴ m = $\frac{n}{n-1}$ $\frac{n}{-1}$. **Answer: (3)**

 $\overline{}$, and the contribution of the

Ex.7 If $2^{2x+3} = 6^{x-1}$, x equals to: **(1) log3 log2 4log2 log3** − ⁺ **(2) log3 2log2 3log2 2log3** − ⁺ **(3) log3 log2 4log2 log3** <u>: + log 3</u>
+ log 2 **(4)** $\frac{3\log 2 + 2\log 3}{\log 3 + 2\log 2}$ + ⁺ **(5) None of these Sol.** Taking log of both sides, we get $(2x + 3)$ log $2 = (x - 1)$ log 6 ⇒ 2x log 2 + 3 log 2 = $(x - 1)$ log $(2 \times 3) = (x - 1)$ (log2 + log3) \Rightarrow 2x log 2 + 3 log 2 = x log 2 + x log 3 – log 2 – log 3 \Rightarrow x log 2 – x log 3 = – 4 log 2 – log 3 \Rightarrow – xlog2 + xlog3 = 4 log 2+ log 3 \Rightarrow x(- log2 + log3) = 4log2 + log 3 ∴ $x = \frac{4 \log 2 + \log 3}{\log 3 - \log 2}$ $4 log 2 + log 3$ − ⁺ . **Answer: (1)** Ex.8 Evaluate: $\frac{log_a n}{log_{ab} n}$ **log n ab ^a . (1) 1 + log_ab (2) 1 + log_ba (3) 0 (4) 1 (5) None of these Sol.** log_{ah} n log_an $\frac{a_n n}{a_b n} = \frac{\log n}{\log a} \times \frac{\log ab}{\log n}$ $\frac{\log n}{\log a} \times \frac{\log ab}{\log n} = \frac{\log ab}{\log a}$ $=\frac{\log a + \log b}{\log a}$ = 1 + logab **Answer: (1)** Ex.9 The sum of the series $\log 3 + \log \frac{9}{4} + \log \frac{27}{16} + \log \frac{81}{64} + \dots$ upto 10 terms is **(1) 55log3 – 110log2 (2) 5(11log3 – 9log4) (3) 55log3 – 11log2 (4) 5(9log3-11log4) (5) None of these Sol.** log3 + log9/4 + log 27/16 + log 81/64 + …. 10 terms $=$ [log3 + log(3)² + ... + log(3)¹⁰] – [log4 + log 4^2 + log 4^3 + ---- log4⁹] $= (1 + 2 + ... + 10) \log 3 - (1 + 2 + ... + 9) \log 4 = 55 \log 3 - 45 \log 4.$ **Answer: (2) Ex.10** If $log_{10}x - log_{10}\sqrt{x} = 2$, log_x10 then x equals to **Sol.** $log_{10}x - \frac{1}{2} log_{10}x = 2 log_x 10$ or $\frac{1}{2}$ log₁₀x = 2 log_x10 $\frac{1}{2}$ log₁₀x = $\frac{2}{\log_{10} x}$ 2 10 \Rightarrow (log₁₀x)² = 4 or log₁₀x = \pm 2. If $log_{10}x = 2$, $x = 10^2 = 100$ If $log_{10}x = -2$, $x = 10^{-2} = \frac{1}{100}$ Therefore, **x = 100 or** $\frac{1}{100}$ 1

 $\overline{}$, and the contribution of the